Lecture 10. Creation of function of Lyapunov for linear systems

Let linear dynamical system of the following form be given:

$$
\dot{x}=A x+B u, u(t) \equiv 0 .
$$

We will consider a free system of the form:

$$
\begin{equation*}
\dot{x}=A x . \tag{6a}
\end{equation*}
$$

Let us choose a function of the following form:

$$
\begin{equation*}
V(x)=x^{T} P x, \tag{6.7}
\end{equation*}
$$

where $P(n \times n)$ is a constant matrix; $P^{T}=P$ is a symmetric matrix, i.e. $P_{i j=} P_{j i}$, $\forall i, j=\overline{1, n}$.

Square-law form (type 6.7) will be considered as Lyapunov's function, but firstly it is reasonable to investigate the properties of a square-law form.
10.1. The properties of a square-law form

Sylvester's criteria
Criterion 1. A square-law form is one of fixed positive-sign, if all main diagonal monitors of matrix P are positive.
Matrix $P>0$ is a positive defined matrix P, i.e.

$$
P_{11}>0 ;\left|\begin{array}{l}
P_{11} P_{12} \\
P_{21} P_{22}
\end{array}\right|>0 ; \ldots \operatorname{det} P>0 .
$$

Criterion 2. A square-law form is one of fixed negative-sign, if signs of main diagonal monitors alternate, beginning with negative. $P<0$ means, that matrix P is defined as negative, i.e.

$$
P_{11}<0 ;\left|\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right|>0 ;\left|\begin{array}{lll}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33}
\end{array}\right|<0 \text { and soon, }
$$

it means that signs alternate, beginning with a negative one.

10.2. Creation of Lyapunov's function for linear systems

Let us consider along with system (6.a) the system transported to it:

$$
(\dot{x})^{T}=x^{T} A^{T} .
$$

Matrix P is chosen as one of fixed positive sign, i.e. $P>0$. The differential of Lyapunov's function is taken as the following (6.7):

$$
\frac{d V}{d t}=\dot{x}^{T} P x+x^{T} P \dot{x}=x^{T} A^{T} P x+x^{T} P A x=x^{T}\left(A^{T} P+P A\right) x=-x^{T} Q x
$$

where $Q(n \times n)$ is a symmetric matrix, it means that $Q=Q^{T}$, besides $Q>0$ is a matrix of fixed positive sign. Hence,

$$
\begin{equation*}
A^{T} P+P A=-Q \tag{6.8}
\end{equation*}
$$

So, equation (6.8) is Lyapunov's matrix equation. Solution of matrix equation is matrix P.

THEOREM. To do matrix A stable, it is necessary and sufficient, for matrix equation (6.8) to have positive-defined solution $P>0$ at any positive-defined matrix $Q>0$.

Matrix equation (6.8) is reduced to the system $\frac{(n+1) n}{2}$ of linear algebraic equations, where " n " is an order of the system.

Example 6.9. Let a linear dynamical system of the $2 n d$ order of the following type be given:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-2 x_{1} \\
\dot{x}_{2}=-5 x_{2}
\end{array}\right.
$$

where $x \in R^{2}$.

The following type of Lyapunov's function of $V(x)$ is given:

$$
V(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

or

$$
V(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)=\frac{1}{2} x^{T} \text { P } x \text {, where } P=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|, x=\left|\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right| .
$$

You should define stability of system by Lyapunov.

Algorithm and solution

1. We will be convinced that the given function $V(x)$ is one of fixed positive-sign, i.e.

$$
\left\{\begin{array}{l}
V(x)>0 \text { if } x \neq 0 \\
V(x)=0 \text { if } x=0
\end{array}\right.
$$

2. It is necessary to define the sign of its full derivative.

$$
\begin{aligned}
& \frac{d V}{d t} \stackrel{\Delta}{=}(\nabla V)^{T} \frac{d x}{x t}=\frac{\partial V}{\partial x_{1}} \frac{d x_{1}}{d t}+\frac{\partial V}{\partial x_{2}} \frac{d x_{2}}{d t} ; \\
& \frac{d V}{d t}=x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2}=-2 x_{1}^{2}-5 x_{2}^{2}=-\left(2 x_{1}^{2}+5 x_{2}^{2}\right) . \\
& \frac{d V}{d t}=-\left(2 x_{1}^{2}+5 x_{2}^{2}\right)<0 .
\end{aligned}
$$

Conclusion: hence, the system is asymptotically stable at any value of x_{1}, x_{2}.
Example 6.10. Let the following linear dynamical system of the 2 nd order be given:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{1} \\
\dot{x}_{2}=-x_{2}
\end{array},\right.
$$

where $x \in R^{2}$.
The following Lyapunov's function is given:

$$
\frac{d V}{d t}=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)>0
$$

You should define stability of system by Lyapunov.

Solution:

$$
\frac{d V}{d t}=x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2}=x_{1}^{2}-x_{2}^{2}<0 \text { in case } x_{2}>x_{1}
$$

Hence, the system is asymptotically stable according to Lyapunov at condition when $x_{2}>x_{1}$.

This method was generalized by American scientist Richard Kalman.
THEOREM of Kalman. The real parts of characteristic roots of matrix A will be less than zero $\alpha<0$ only in one case: when for any positively defined symmetric matrix Q, there exists positively defined symmetric matrix P, which is the only solution of the following type equation:

$$
-2 \alpha P+A^{T} P+P A=-Q,
$$

where $\operatorname{Re} \lambda_{i}(A) \leq \alpha_{i} ; \alpha=$ const.
Example 6.11. Let the following linear dynamical system of the 2nd order is given:

$$
\left\{\begin{array}{l}
\dot{x}=5 x_{1}-3 x_{2} \\
\dot{x}=-4 x_{1}+2 x_{2}
\end{array} .\right.
$$

The following Lyapunov's function is given:

$$
V(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) .
$$

You should define system stability according to Lyapunov.

Algorithm and solution

1. We will be convinced that the given function $V(x)$ is one of fixed positive-sign, i.e.

$$
\left\{\begin{array}{l}
V(x)>0 \text { if } x \neq 0 \\
V(x)=0 \text { if } x=0
\end{array}\right.
$$

2. It is necessary to define the sign of its full derivative.

$$
\begin{aligned}
& \frac{d V}{d t}=x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2}=x_{1}\left(5 x_{1}-3 x_{2}\right)+x_{2}\left(-4 x_{1}+2 x_{2}\right)<0 \\
& 5 x_{1}^{2}-3 x_{1} x_{2}-4 x_{1} x_{2}+2 x_{2}^{2}<0 \\
& 5 x_{1}^{2} \neq 0 \Rightarrow \frac{5 x_{1}^{2}}{5 x_{1}^{2}}-\frac{7 x_{1} x_{2}}{5 x_{1}^{2}}+\frac{2 x_{2}^{2}}{5 x_{1}^{2}}
\end{aligned}
$$

3. Let us introduce the designation $\frac{x_{2}}{x_{1}}=z$ and obtain:

$$
\begin{aligned}
& \frac{2}{5} z^{2}-\frac{7}{5} z+1<0 \\
& z^{2}-\frac{7 \times 5}{2 \times 5} z+\frac{5}{2}<0 \\
& z^{2}-\frac{7}{2} z+\frac{2}{5} z+\frac{5}{2}<0 \\
& z_{1,2}=\frac{7}{4} \pm \sqrt{\frac{49}{16}-\frac{5}{2}} \\
& z_{1,2}=\frac{7}{4} \pm \frac{3}{4} ; z_{1}=1, z_{2}=\frac{10}{4}
\end{aligned}
$$

Conclusion: this system is asymptotically stable according to Lyapunov in case when $x_{1} \in\left(0.4 x_{2}, x_{2}\right)$ (fig.).

Geometrical interpretation:

Fig. - The movement of a system asymptotically is steady across Lyapunov

